Знакочередующиеся и знакопеременные ряды и их сходимость. Примеры

Знакочередующиеся ряды. Признак Лейбница.
Абсолютная и условная сходимость

Для того чтобы понять примеры данного урока необходимо хорошо ориентироваться в положительных числовых рядах: понимать, что такое ряд, знать необходимый признак сходимости ряда, уметь применять признаки сравнения, признак Даламбера, признаки Коши. Тему можно поднять практически с нуля, последовательно изучив статьи Ряды для чайников и Признак Даламбера. Признаки Коши . Логически этот урок является третьим по счёту, и он позволит не только разобраться в знакочередующихся рядах, но и закрепить уже пройденный материал! Какой-то новизны будет немного, и освоить знакочередующиеся ряды не составит большого труда. Всё просто и доступно.

Что такое знакочередующийся ряд? Это понятно или почти понятно уже из самого названия. Сразу простейший пример.

Рассмотрим ряд и распишем его подробнее:

А сейчас будет убийственный комментарий. У членов знакочередующегося ряда чередуются знаки: плюс, минус, плюс, минус, плюс, минус и т.д. до бесконечности.

Знакочередование обеспечивает множитель : если чётное, то будет знак «плюс», если нечётное – знак «минус» (как вы помните ещё с урока о числовых последовательностях , эта штуковина называется «мигалкой»). Таким образом, знакочередующийся ряд «опознается» по минус единичке в степени «эн».

В практических примерах знакочередование членов ряда может обеспечивать не только множитель , но и его родные братья: , , , …. Например:

Подводным камнем являются «обманки»: , , и т.п. – такие множители не обеспечивают смену знака . Совершенно понятно, что при любом натуральном : , , . Ряды с обманками подсовывают не только особо одаренным студентам, они время от времени возникают «сами собой» в ходе решения функциональных рядов .

Как исследовать знакочередующийся ряд на сходимость? Использовать признак Лейбница. Про немецкого гиганта мысли Готфрида Вильгельма Лейбница я рассказывать ничего не хочу, так как помимо математических трудов, он накатал несколько томов по философии. Опасно для мозга.

Признак Лейбница : Если члены знакочередующегося ряда монотонно убывают по модулю, то ряд сходится.

Или в два пункта:

1) Ряд является знакочередующимся.

2) Члены ряда убывают по модулю: , причём, убывают монотонно.

Если выполнены эти условия, то ряд сходится .

Краткая справка о модуле приведена в методичке Горячие формулы школьного курса математики , но для удобства ещё раз:

Что значит «по модулю»? Модуль, как мы помним со школы, «съедает» знак «минус». Вернемся к ряду . Мысленно сотрём ластиком все знаки и посмотрим на числа . Мы увидим, что каждый следующий член ряда меньше , чем предыдущий. Таким образом, следующие фразы обозначают одно и то же:

– Члены ряда без учёта знака убывают.
– Члены ряда убывают по модулю .
– Члены ряда убывают по абсолютной величине .
Модуль общего члена ряда стремится к нулю:

// Конец справки

Теперь немного поговорим про монотонность. Монотонность – это скучное постоянство.

Члены ряда строго монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю МЕНЬШЕ, чем предыдущий: . Для ряда выполнена строгая монотонность убывания, её можно расписать подробно:

А можно сказать короче: каждый следующий член ряда по модулю меньше, чем предыдущий: .

Члены ряда нестрого монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю НЕ БОЛЬШЕ предыдущего: . Рассмотрим ряд с факториалом: Здесь имеет место нестрогая монотонность, так как первые два члена ряда одинаковы по модулю. То есть, каждый следующий член ряда по модулю не больше предыдущего: .

В условиях теоремы Лейбница должна выполняться монотонность убывания (неважно, строгая или нестрогая). Кроме того, члены ряда могут даже некоторое время возрастать по модулю , но «хвост» ряда обязательно должен быть монотонно убывающим.

Не нужно пугаться того, что я нагородил, практические примеры всё расставят по своим местам:

Пример 1

В общий член ряда входит множитель , и это наталкивает на естественную мысль проверить выполнение условий признака Лейбница:

1) Проверка ряда на знакочередование. Обычно в этом пункте решения ряд расписывают подробно и выносят вердикт «Ряд является знакочередующимся».

2) Убывают ли члены ряда по модулю? Здесь нужно решить предел , который чаще всего является очень простым.

– члены ряда не убывают по модулю, и из этого автоматически следует его расходимость – по той причине, что предела не существует *, то есть, не выполнен необходимый признак сходимости ряда .

Пример 9

Исследовать ряд на сходимость

Пример 10

Исследовать ряд на сходимость

После качественной проработки числовых положительных и знакопеременных рядов с чистой совестью можно перейти к функциональным рядам , которые не менее монотонны и однообразны интересны.

Ряд называется знакочередующимся, если любые два соседних его члена имеют разные знаки, т.е. ряды вида u 1 – u 2 + u 3 – u 4 +… + u n + …, где u 1 , u 2 , …, u n , … положительны.

Теорема Лейбница. Если члены знакочередующегося ряда, взятые по абсолютной величине, монотонно убывают и модуль общего члена ряда стремится к нулю при , т.е.
, то ряд сходится.

Пример 1.

Исследовать сходимость знакочередующегося ряда:

.

Члены ряда, взятые по абсолютной величине, монотонно убывают:


Ряд сходится.

1.6. Знакопеременные ряды. Абсолютная и условная сходимость ряда

Ряд u 1 + u 2 +…+ u n +… называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные.

Знакочередующиеся ряды являются частным случаем знакопеременных рядов.

Теорема. Дан знакопеременный ряд u 1 + u 2 +…+ u n +…(1). Составим ряд | u 1 |+| u 2 |+…+| u n |+… (2). Если ряд (2), составленный из абсолютных величин членов ряда (1), сходится, то ряд (1) сходится.

Определение. Знакопеременный ряд u 1 + u 2 +…+ u n +… называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов |u 1 |+| u 2 |+…+| u n |+… .

Если же знакопеременный ряд (1) сходится, а ряд (2), составленный из абсолютных величин его членов, расходится, то данный знакопеременный ряд (1) называется условно или неабсолютно сходящимся рядом.

Пример 1.

Исследовать на сходимость и абсолютную сходимость ряд:
.

Знакочередующийся ряд сходится по теореме Лейбница, т.к.
. Члены ряда монотонно убывают и
. Теперь исследуем данный ряд на абсолютную сходимость. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда:. Исследуем сходимость этого ряда с помощью признака Даламбера:
. Ряд сходится. Значит, заданный знакочередующийся ряд сходится абсолютно.

Пример 2.

Исследовать на сходимость и абсолютную сходимость ряд:
.

По теореме Лейбница
. Ряд сходится. Ряд, составленный из абсолютных величин членов данного ряда, имеет вид
. По признаку Даламбера получим
. Ряд сходится, значит, заданный знакопеременный ряд сходится абсолютно.

2. Функциональные ряды. Область сходимости функционального ряда

Рассмотрим последовательность функций, заданных на некотором промежутке [ a , b ] :

f 1 (x ), f 2 (x ), f 3 (x ) … f n (x ), ….

Приняв эти функции в качестве членов ряда, образуем ряд:

f 1 (x ) + f 2 (x ) + f 3 (x ) + … + f n (x ) + …, (1)

который называется функциональным рядом .

Например: sin(x) + sin(2x) + sin(3x) + … + sin(nx) + …

В частном случае функциональным рядом является ряд:

который называется степенным рядом , где
постоянные числа, называемыекоэффициентами членов степенного ряда .

Степенной ряд может быть записан и в такой форме:

где
некоторое постоянное число.

При определенном фиксированном или числовом значении x получим числовой ряд, который может быть сходящимся или расходящимся.

Определение : Совокупность всех значений х (или всех точек х числовой прямой), при которых степенной ряд сходится, называется областью сходимости степенного ряда.

Пример 1.

Найти область сходимости степенного ряда:

Решение (1 способ) .

Применим признак Даламбера.


Так как признак Даламбера применим к рядам только с положительными членами , то выражение, стоящее под знаком предела, взято по абсолютной величине.

По признаку Даламбера ряд сходится, если
и
.

Т.е. ряд сходится, если < 1, откуда
или-3< x <3.

Получим интервал сходимости данного степенного ряда: (-3;3).

В крайних точках интервала x =
, будем иметь
.

В этом случае теорема Даламбера не дает ответа на вопрос о сходимости ряда.

Исследуем ряд на сходимость в граничных точках:

x = -3 ,

Получим знакочередующийся ряд. Исследуем его на сходимость по признаку Лейбница:

1.
члены ряда, взятые по абсолютной величине, монотонно убывают.

2.
Следовательно, ряд в точкеx = -3 сходится.

x = 3,

Получим положительный ряд. Применим интегральный признак Коши сходимости ряда.

члены ряда монотонно убывают.

Функция
на промежутке
:


.

Несобственный интеграл расходится, значит, ряд в точке x=3 расходится.

Ответ:

Второй способ определения области сходимости степенного ряда основан на применении формулы радиуса сходимости степенного ряда:

, где и
коэффициентыи
членов ряда.

Для данного ряда имеем:

. R =3.

ряд сходится

Интервал сходимости ряда: -3< x <3.

Далее, как и в предыдущем случае, надо исследовать в граничных точках: x =
.

Ответ: область сходимости ряда [-3;3).

Отметим, что второй способ определения области сходимости степенного ряда с использованием формулы радиуса сходимости ряда
более рационален.

Пример 2.

Найти область сходимости степенного ряда:
.

Найдем R – радиус сходимости ряда.

,
,
.

.
.

Интервал сходимости ряда (-;).

Исследуем ряд на сходимость в точках x = -иx = .

x = - ,

Получим знакочередующийся ряд. Применим признак Лейбница:

1.
члены ряда, взятые по абсолютной величине, монотонно убывают.

2.
, следовательно, ряд в точкеx = -сходится.

x = ,
.

Получили ряд с положительными членами. Применим интегральный признак Коши.

Здесь
:

, члены ряда
монотонно убывают.

Функция
на промежутке
:


.

Несобственный интеграл расходится, ряд расходится.

Ответ: [-;) – область сходимости ряда.

До сих пор мы изучали только ряды, все члены которых были положительными . Теперь мы перейдем к рассмотрению рядов, содержащих как положительные, так и отрицательные члены. Такие ряды называются знакопеременными.

В качестве примера знакопеременного ряда приведем ряд

Изучение знакопеременных рядов мы начнем с частного случая, так называемых знакочередующихся рядов, т. е. рядов, в которых за каждым положительным членом следует отрицательный и за каждым отрицательным членом следует положительный.

Обозначая через - абсолютные величины членов ряда и считая, что первый член положителен, знакочередующийся ряд запишем следующим образом:

Для знакочередующихся рядов имеет место достаточный признак сходимости Лейбница.

Признак Лейбница. Если в знакочередующемся ряде (34) абсолютные величины членов убывают:

и общий член ряда стремится к нулю: , то ряд сходится и его сумма не превосходит первого члена ряда.

Доказательство. Рассмотрим частичную сумму четного числа членов ряда

Сгруппируем члены попарно:

Так как по условию абсолютные величины членов ряда убывают, то все разности в скобках положительны и, следовательно, сумма положительна и возрастает при увеличении .

Запишем теперь группируя члены иным образом:

Сумма в квадратных скобках будет также положительной. Поэтому для любого значения . Таким образом, последовательность четных частичных сумм возрастает с увеличением , оставаясь при этом ограниченной. Следовательно, имеет предел

При этом, так как то ясно, что Рассмотрим теперь сумму нечетного числа членов:

При имеем

так как по условию и, следовательно, .

Таким образом, частичные суммы как четного, так и нечетного числа членов имеют общий предел S. Это означает, что вообще , т. е. ряд сходится. При этом, как видно из доказательства, сумма ряда S не превосходит первого члена ряда.

Пример 1. Исследовать, сходится или расходится ряд

Решение. Этот ряд удовлетворяет условиям признака Лейбница:

Следовательно, ряд сходится.

Перейдем теперь к рассмотрению общего случая знакопеременного ряда. Будем предполагать, что в ряде

числа могут быть как положительными, так и отрицательными.

Для таких рядов имеет место следующий достаточный признак сходимости знакопеременного ряда.

Теорема. Если для знакопеременного ряда

сходится ряд, составленный из абсолютных величин его членов

то данный знакопеременный ряд также сходится.

Доказательство. Рассмотрим вспомогательный ряд, составленный из членов рядов (37) и (38):

Таким образом, члены ряда (39) либо равны членам сходящегося ряда (38), либо меньше их. Поэтому ряд (39) сходится на основании признака сравнения (см. п. 5, теорему 1 и сноску на стр. 501).

Умножив все члены сходящегося ряда (38) на получим сходящийся ряд

(см. п. 3, теорема 1). Рассмотрим теперь ряд, являющийся разностью сходящихся рядов (39) и (40)

Этот ряд сходится на основании теоремы 2 п. 3.

Но ряд (37) получается из последнего ряда умножением всех его членов на 2:

Следовательно, ряд (37) также сходится (п. 3, теорема 1).

Пример 2. Исследовать на сходимость знакопеременный ряд (33)

Решение. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда

Этот ряд сходится, как обобщенный гармонический ряд с показателем . Следовательно, на основании доказанного признака сходится и данный ряд (33).

Этот признак является достаточным, но не необходимым. Это значит, что существуют знакопеременные ряды, которые сходятся, в то время как ряды, составленные из абсолютных величин их членов, расходятся.

Действительно рассмотрим ряд

который, очевидно, сходится по признаку Лейбница. Между тем, ряд

составленный из абсолютных величин членов данного ряда является гармоническим и, следовательно, расходится.

Хотя рассмотренные выше ряды (33) и (42) оба сходятся, однако характер их сходимости различен.

Ряд (33) сходится одновременно с рядом (41), составленным из абсолютных величин его членов, тогда как ряд (43), составленный из абсолютных величин сходящегося ряда (42), расходится.

В связи с этим введем следующие определения.

Определение. Знакопеременный ряд абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов

На основании достаточного признака сходимости знакопеременного ряда всякий абсолютно сходящийся ряд будет сходящимся.

Определение. Знакопеременный ряд называется неабсолютно сходящимся, если он сходится, а ряд, составленный из абсолютных величин его членов их расходится.

Возвращаясь к рассмотренным выше примерам, можем сказать, что ряд (33) является абсолютно сходящимся, а ряд ( - неабсолютно сходящимся.

Ряд (1) называется знакопеременным , если среди его членов имеются как положительные, так и отрицательные члены.

Теорема (достаточный признак сходимости знакопеременного ряда ). Пусть задан знакопеременный ряд

a 1 + a 2 + … +a n + …. (13)

Если ряд, составленный из абсолютных величин членов данного ряда

|a 1 | + |a 2 | + … + |a n | +… , (14)

сходится, то сходится и данный ряд (13).

Ряд (13) называется абсолютно сходящимся, если сходится ряд (14), составленный из абсолютных величин членов ряда (13). Если же знакопеременный ряд (13) сходится, а ряд (14) расходится, то ряд (13) называется условно или неабсолютно сходящимся .

a 1 – a 2 + a 3 – a 4 +… + a n + …., (15)

где , называется знакочередующимся.

Теорема (признак Лейбница ). Знакочередующийся ряд (15) сходится, если абсолютные величины его членов не возрастают, а общий член стремится к нулю, т.е. если выполняются следующие два условия:

Замечание 1 . При решении задач на исследование сходимости ряда полезно знать особенности поведения следующих рядов:

1. Ряд, составленный из членов геометрической прогрессии : сходится при и расходится при , q – знаменатель прогрессии;

2. Обобщенный гармонический ряд : сходится при и расходится при . В частном случае () получаем гармонический ряд , который расходится.

Замечание 2. Если ряд (15) удовлетворяет условиям признака Лейбница, то ошибка, совершаемая при замене S на S n , не превосходит по абсолютной величине первого из отброшенных членов. Это свойство используется для приближенных вычислений.

Задание 1

Решение. Так как (второй замечательный предел), то в силу следствия из необходимого признака сходимости ряда получаем, что данный ряд расходится.

Задание 2 .

Решение . Выясним поведение данного ряда с помощью признака сравнения. Для этого сравним его с рядом (это – обобщенный гармонический ряд, который сходится, так как ). Имеем:

и, следовательно, из сходимости ряда по признаку сравнения следует сходимость и данного ряда.

Задание 3 . Исследовать на сходимость ряд .

Решение. Выясним поведение данного ряда с помощью предельного признака сравнения. Сравним данный ряд с рядом (это - гармонический ряд, который расходится). Имеем:

и, следовательно, ряды и данный ведут себя одинаково. Таким образом, по предельному признаку сравнения исследуемый ряд расходится.

Задание 4. Исследовать на сходимость ряд .

Решение. Применим к данному ряду признак Даламбера. Имеем:

Тогда . Следовательно, по признаку Даламбера данный ряд сходится.



Задание 5. Исследовать на сходимость ряд .

Решение . Применим к данному ряду признак Коши. Имеем:

и, следовательно, в силу признака Коши данный ряд сходится.

Задание 6 . Исследовать на сходимость ряд .

Решение . Применим к данному ряду интегральный признак Коши. Имеем:

Для исследования исходного ряда на условную сходимость применим к нему признак Лейбница. Имеем:

1) и очевидно, что

Следовательно, условия признака Лейбница выполнены. Таким образом, исходный ряд сходится условно.

Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным.

Абсолютная и условная сходимость

Ряд называется абсолютно сходящимся, если ряд также сходится.

Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно.

Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Исследовать на сходимость ряд .

Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем

поскольку . Следовательно, данный ряд сходится.

38. Знакочередующиеся ряды. Признак Лейбница.

Частным случаем знакопеременного ряда является знакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки.

Признак Лейбница

Для знакочередующихся рядом действует достаточный признак сходимости Лейбница.

Пусть {an} является числовой последовательностью, такой, что

1. an+1 < an для всех n;

Тогда знакочередующиеся ряды исходятся.

39. Функциональные ряды. Степенные ряды. Радиус сходимости. Интервал сходимости.

Понятие функционального ряда и степенного ряда

Обычный числовой ряд, вспоминаем, состоит из чисел:

Все члены ряда –это ЧИСЛА.

Функциональный же ряд состоит из ФУНКЦИЙ:

В общий член рядапомимо многочленов, факториалов и других подарков непременно входит буковка «икс». Выглядит это, например, так:

Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде:

Как видите, все члены функционального ряда это функции.

Наиболее популярной разновидностью функционального ряда является степенной ряд.

Определение:

Степенной ряд – это ряд, в общий член которого входят целые положительные степени независимой переменной.

Упрощенно степенной ряд во многих учебниках записывают так: , где– это старая знакомая «начинка» числовых рядов (многочлены, степени, факториалы, зависящие только от «эн»). Простейший пример:

Посмотрим на это разложение и еще раз осмыслим определение: члены степенного ряда содержат «иксы» в целых положительных (натуральных) степенях.

Очень часто степенной ряд можно встретить в следующих «модификациях»: илигде а – константа. Например:

Строго говоря, упрощенные записи степенного ряда,илине совсем корректны. В показателе степени вместо одинокой буквы «эн» может располагаться более сложное выражение, например:

Или такой степенной ряд:

Лишь бы показатели степеней при «иксАх» были натуральными.

Сходимость степенного ряда .

Интервал сходимости, радиус сходимости и область сходимости

Не нужно пугаться такого обилия терминов, они идут «рядом друг с другом» и не представляют особых сложностей для понимания. Лучше выберем какой-нибудь простой подопытный ряд и сразу начнём разбираться.

Прошу любить и жаловать степенной ряд Переменная может принимать любое действительное значение от «минус бесконечности» до «плюс бесконечности». Подставим в общий член ряда несколько произвольных значений «икс»:

Если х=1,то

Если х=-1,то

Если х=3,то

Если х=-0,2, то

Очевидно, что, подставляя в то или иное значение «икс», мы получаем различные числовые ряды. Некоторые числовые ряды будут сходиться, а некоторые расходиться. И наша задача найти множество значений «икс», при котором степенной рядбудет сходиться. Такое множество и называется областью сходимости ряда.

Для любого степенного ряда (временно отвлекаемся от конкретного примера) возможны три случая:

1) Степенной ряд сходится абсолютно на некотором интервале . Иными словами, если мы выбираем любое значение «икс» из интервалаи подставляем его в общий член степенного ряда, то у нас получается абсолютно сходящийся числовой ряд. Такой интервал и называется интервалом сходимости степенного ряда.

Радиус сходимости, если совсем просто, это половина длины интервала сходимости:

Геометрически ситуация выглядит так:

В данном случае, интервал сходимости ряда: радиус сходимости ряда:

Просмотров