Еще раз о биотехнологии, но больше о том, как нам выйти в мир. Накануне больших перемен Новый способ борьбы с гриппом

Беседу ведет специальный корреспондент журнала Н. ДОМРИНА

На вопросы редакции отвечает академик Национальной академии наук Украины (НАНУ), академик ряда европейских академий наук Ю. ГЛЕБА, директор Института клеточной биологии и генной инженерии НАНУ, профессор, руководитель биотехнологической компании "Айкон дженетикс".

Юрий Юрьевич, наука, которой вы занимаетесь - биотехнология растений, - сегодня едва ли не самая передовая. Об этом говорит, в частности, тот факт, что на Всемирном экономическом форуме в Давосе, состоявшемся в конце января 2000 года - фактически накануне XXI века, - биотехнология была названа в числе трех ведущих сфер мировой экономики, наряду с Интернетом и средствами связи. Что, по вашему мнению, позволило этой научной дисциплине так быстро стать отраслью экономики и войти в лидирующую тройку?

На самом деле это произошло не так уж быстро - наследственная роль ДНК открыта почти 50 лет назад. К счастью, учеными был практически сразу распознан заложенный в биологии потенциал, и ее развитие пошло семимильными шагами. Выход на арену биотехнологии - следствие этого развития, а также свидетельство того, что биология получила от общества социальный заказ на решение острейших проблем: охрана здоровья и питание.

В настоящее время население земного шара составляет 6 с чем-то миллиардов человек, и его еще удается худо-бедно кормить. Но через 30-40 лет нас будет уже 10 миллиардов. Свободных для возделывания земель больше нет, темпы роста урожайности снижаются, а потенциал традиционных технологий, основанных на селекции, на химизации, на изучении питательных потребностей растений и т. д., практически исчерпан. Единственной альтернативой старым наукам (я бы назвал их "зрелыми")

выступает биотехнология, и общество это уже осознало.

Второй аспект может показаться парадоксальным. Дело в том, что биотехнология является разделом информационной технологии. Специфика состоит лишь в том, что информация здесь "зашита" в ДНК. Растение - тот же компьютер, оно перерабатывает информацию, используя материалы, в том числе искусственные, и создает нечто новое - трансгенное растение, то есть интересующий нас продукт. Отсюда вывод: биотехнология окажется не менее мощной и продуктивной отраслью науки и экономики, чем информатика. Поэтому абсолютно естественен тот факт, что и инвесторы, и бизнесмены от информационных технологий и Интернета идут к биотехнологии. Вполне оправданный шаг.

Мне, как человеку, имеющему пристрастие к растениям, понравилось высказывание редактора журнала "Сайенс". Мысль его такова: пока мы в основном обращали внимание на потенциал биотехнологии в фармацевтической промышленности, однако глобальный эффект проявится в результате манипуляций с ДНК растений. В конечном итоге мир будет получать пищу, топливо, волокна, химические материалы и фармацевтические продукты из генетически измененных растительных организмов.

А вообще технологии на основе живых организмов издревле сопровождали человека. Переработка молока, получение сыров, пива, вина - по существу та же биотехнология. Но, конечно, подобные ассоциации сегодня, когда научились клонировать животных, прочитывать целые геномы растений, ни у кого из нас не возникают.

Такое впечатление, что слово "технология" стало в наши дни ключевым. Сейчас всюду говорят о технологиях: информационных, космических, химических, медицинских, технологиях обучения и проведения проектов. Комитет по науке и технике заменен министерством по науке и технологиям... Во всем этом видится некая механистичность.

В "засилье технологий" я тоже ощущаю привкус механики, но речь идет, как мне кажется, о разнице между знанием, которое нам что-то объясняет, и знанием, которое нас вооружает: одно дело - "я знаю", другое - "умею". Вот если я просто "знаю", то это фундаментальная наука, если я "умею" - это уже технология, некая совокупность действий, процессов, а также процедура управления этими процессами, регламент, направленный на достижение заранее предопределенного результата.

Наличие технологий говорит о том высоком уровне зрелости конкретной науки, когда она начинает развиваться настолько быстро, что оказывается полезной обществу, становится, как мы говорим, прикладной. Так что, с одной стороны, слово "технология", сочетаемое с какой-либо наукой, это признак ее зрелости. Ведь пока наука остается "наивной", являясь совокупностью добытых знаний, она описывает феномен, но не понимает механизмов, стало быть, не может предложить и решений, как этими механизмами управлять. С другой стороны, приставка "технология" говорит о скорости развития науки, позволяющей ей очень быстро выходить на уровень зрелости.

- Вы хотите сказать, что не только в жизни, но и в науке наступила эпоха высоких скоростей?

Да, по крайней мере, в биологии такой этап наступил, и я бы назвал его этапом высокопропускной генетики.

После того как мы объяснили себе, каким же образом строится живое (на распознавание функций этих кирпичиков: ДНК, РНК, белков, углеводов, жиров и т. д. - ушло довольно много времени в XX столетии, и ответов у биологов накопилось очень много), следующей вехой на пути развития биотехнологии стало открытие технологий рекомбинантных ДНК, когда мы научились создавать искусственные молекулы, несущие новые наборы информации, и переносить их из одного организма в другой. То есть мы научились конструировать живое.

Сегодня же, прямо на наших глазах, как мне представляется, устанавливается очередная веха. И это уже не просто геномика как новейшая научная дисциплина, дающая описание всего организма и изучающая целые геномы, а тот этап, в который мы вступили несколько лет назад и который отмечен невероятным ускорением исследовательского процесса и наших способностей манипулирования, тот уровень науки и технологий, когда мы оказались в состоянии не только работать с целым геномом, но очень быстро оценивать огромное количество процессов или конструкций, которые мы насоздавали. Вот этот этап я и называю этапом высокопропускной генетики, поскольку сегодня без скоростных генетических методов в биологии уже ничего нельзя сделать, а им, этим методам, от силы десяток лет. Десять лет тому назад мы вступили в эпоху высокопропускной генетики.

- А через пару лет расшифруем геном человека - я правильно продолжаю вашу мысль?

Не исключено, что геном человека будет прочитан в этом, 2000 году. В Соединенных Штатах есть компания, она называется "Селера" (от лат. accelero - ускоряю), ее руководитель Крег Вентер бросил вызов всем государственным международным программам по секвенированию (расшифровке совокупности генов и межгенных участков) генома человека, сказав, что может сделать это намного быстрее, чем они. Его подход включает два компонента: первый - новые машины, в которых используются капиллярные автоматы, читающие примерно миллион пар оснований в неделю, второй - финансы. Вентер может себе позволить иметь в огромном зале 100 или 150 машин и читать 150 миллионов пар оснований в неделю. Для сравнения: с помощью такого машинного зала в течение недели может быть прочитан полный геном растения арабидопсис, а это 25 тысяч генов.

И все-таки, несмотря на свои исключительные достижения, биотехнология пребывает в младенческом возрасте. Мы понимаем пока лишь значение конкретного гена - всего контекста еще не видим. Качественный прыжок от информации об одном к информации о целом - о десятках тысяч генов, которые играют симфонию живого, - это и будет самый интересный этап для биологов, а результаты их открытий станут важнейшими для человека.

- Если все, о чем вы говорите, - младенчество биотехнологии, каким же будет взросление?

Нам с вами трудно себе представить ее взросление. Оно настолько поменяет наши возможности, что об этом лучше говорить с фантастами, а не с ученым.

- Эра прикладной науки! А мы готовы в нее войти?

Мне кажется, у нас, на территории бывшего Союза, господствует несколько высокомерное отношение к технологиям, к прикладной науке. Мы все еще живем вчерашним днем, многим из нас по-прежнему кажется, что призвание академических ученых - исключительно фундаментальные исследования. Но мы забываем, что наука больше не может позволить себе эту роскошь. И не только потому, что она внутренне уже готова, помимо понимания явлений, давать и решение проблем, а потому, что она стала непомерно дорогой для общества. Общество вправе требовать, чтобы в обмен на его поддержку наука старалась как можно быстрее выдавать на-гора практические решения и таким образом окупать себя.

Я понимаю, что при подобном подходе легко выплеснуть ребенка из купели, но не видеть ключевого значения прикладной науки дальше нельзя. Кстати, на Западе тоже довольно долго существовало такое же высокомерное отношение, но оно исчезло, несмотря на то, что там намного больше денег идет на науку. Если вы сейчас посмотрите на поведение какого-нибудь университетского профессора в Соединенных Штатах или ученого любого макс-планковского (академического) института в Германии либо какого-нибудь академического института в Великобритании, вы обнаружите, что прикладные аспекты науки интересуют их не меньше, а, может, и больше, чем фундаментальные. И американский профессор, и европейский исследователь стремятся увидеть прикладной аспект того, что они исследуют, а увидев, тут же пытаются полученную ими новую информацию запатентовать, закрепить за собой, чтобы иметь юридически узаконенный приоритет в своей области, потому что только тогда полученные ими новые знания приобретут привлекательность для бизнеса, для общества, их можно будет использовать, в том числе с тем, чтобы вернуть затраченные на исследования материальные ресурсы и получить возможность продолжить научный поиск. Еще несколько лет назад мои коллеги - директора институтов Общества имени Макса Планка по содействию германской науке (MPG) тоже по-снобистски относились к подобным вещам, а сегодня крупнейшее и наиболее зрелое агентство по патентованию находится как раз в Обществе имени Макса Планка, а мой добрый коллега Лотер Вилмицер, директор института молекулярной физиологии растений, создает уже третью биотехнологическую компанию.

По всей видимости, западное общество в силу своего рационального устройства к этому больше готово, чем наше.

И да, и нет. То, что сегодня я вижу у немецких коллег, у американских профессоров, - нечто более или менее недавно обретенное. До начала 1980-х годов фундаментальные исследования и в Европе, и в Соединенных Штатах поддерживались на довольно высоком уровне. И хотя уже введены были конкурсные формы финансирования, денег в целом было еще вполне достаточно, поэтому чисто материального давления для того, чтобы искать дополнительные источники финансирования для своих исследований, у западных ученых не было. Так что это вещи, которые развиваются и в силу самого бытия, а не только лишь осознания необходимости.

В какой-то мере я согласен с вами, потому что у нас материальное давление не меньше, а больше, чем там, и тем не менее эти процессы идут у нас туго. Но пока мы этого не поймем, дальше не продвинемся. Нереально ожидать от Российского государства, не говоря уже об Украине, Грузии, что они будут в полном объеме поддерживать научные исследования, то есть будут в состоянии выделять по 100 000 долларов в год на одного ученого (это то, что на Западе тратит, скажем, биолог на исследования, на реактивы, приборы, на инфраструктуру, - зарплата в эту сумму не входит). С другой стороны, сколь высоко мы бы себя ни ценили, наивно продолжать считать, что, тратя на те же исследования в десять, а то и в сто раз меньше их, мы сможем с ними конкурировать. Талант, конечно, компенсирует отсутствие материальных средств, но не настолько.

А вы считаете, что мы должны продолжать конкурировать? Сегодня только и слышишь со всех сторон: наука интернациональна, неважно, где подготовлено открытие, важно, чтобы его плодами могло пользоваться все человечество.

Совершенно верно, это я как раз и имею в виду, говоря о конкурентной ситуации. Сегодня можно покинуть страну (я это в значительной степени делаю, потому что вот уже десять лет, как я в основном живу за границей) и вести игру, находясь там, по ту сторону бывшего "железного занавеса", но возникает вопрос, можно ли ее играть здесь? Мне кажется, можно, и именно потому, что наука стала международной. Для больших компаний уже не так важно, где находится ученый. Единое информационное поле облегчает открытость практически всех стран, и если в какой-то момент западная компания убедится, что, имея дело с русскими, выиграешь в цене, а в качестве не проиграешь, то, уверяю вас, они к нам придут. Но для этого с нашей стороны должны появиться ученые новой для нас формации, которые не будут бояться выходить на международный рынок, знающие, что они продают, как продавать, и делающие все это профессионально. Иначе мы бесконечно будем сбиваться на разговоры о том, что у нас воруют, что Сорос, де, забирает какие-то невероятные открытия, которых, смею считать, у нас не так много, тем более в области технологий. Ведь практически все наши технологические разработки советского времени были направлены на военные или космические цели, и в них не были заложены компоненты стоимости, экономической целесообразности, отсюда их нежизнеспособность в сегодняшней ситуации. Но после того, как вы вводите в общее уравнение эти экономические компоненты, поле оказывается единым, и на нем можно играть, то есть получать достаточно средств на исследования. Но для этого, повторяю, нужен профессионализм не только в своей области, но и в том, как добытые новые сведения правовым образом защитить и где найти им применение. И такие профессионалы в СНГ уже есть.

Чтобы не быть голословным, назову профессора Атабекова в Московском университете, с которым мы ведем переговоры о том, чтобы взять лицензию на некоторые из его открытий. Дело в том, что Иосиф Атабеков и его сотрудники, отлично разобравшись в том, как западные компании развивают сейчас биотехнологический процесс, увидели его узкие места и предложили некоторые решения, как эти узкие места устранить. В лаборатории Атабекова делают науку самой высокой пробы. Но зрелый подход в данном случае заключался не только в том, что наука хорошая, и даже не столько в том, что они закрепили за собой достигнутые результаты и русским патентом, и в Европе, но в том, что они знали, каких именно технологических решений требует рынок. Как часто, получая интересные результаты 20-30-летних исследований, мы не спрашивали себя, а нужно ли кому-то то, что мы предлагаем. Расходы на патентование оказываются вдвойне обременительными, если патентовать то, на что нет спроса.

- А в чем суть открытий профессора Атабекова?

В его лаборатории обнаружена возможность запускать работу дополнительного гена в растениях в отсутствие дополнительного промотора. Любой ген имеет структурную часть, промотор и терминатор - некие участки, сообщающие организму о наличии данного гена, о том, что его надо прочитать, сделать из него белок и т. д. Классический учебник генетики скажет вам, что ген читается рибосомой только с участка, непосредственно прилегающего к промотору, то есть один промотор - один белок. Современный учебник скажет: необязательно в том случае, если есть некий участок ДНК, который, будучи прочитан и переведен на информационную РНК (или матричную - мРНК), дает возможность рибосоме распознать его и садиться не в начало мРНК, а в серединку этой молекулы, и с этого момента читать вконец все, как будто бы там был вот этот самый участок, который она распознает. То есть в одной мРНК может быть закодировано несколько белков, и рибосомный комплекс будет считывать каждый из них, так сказать, в отдельности, исходя из распознавания элемента, который по-английски называется internal ribosome entry site ("место вхождения рибосомы внутрь молекулы").

Предложенное группой профессора Атабекова решение позволяет с минимальным количеством промоторов читать большее количество генов и получать больше белков. Это важно не только само по себе, но и в плане интеллектуальной собственности. Дело в том, что вирусы - очень экономичные вещества, в них мало лишнего, и всунуть, как мы говорим, туда дополнительный промотор технологически очень сложно, а иногда просто невозможно, потому что все варианты использования дополнительного промотора уже запатентованы конкурентами. То, что предлагает Атабеков, позволяет практически безболезненно это делать, обходя многие патенты других компаний, которые, проработав в этой области по 10-15 лет, попытались сделать так, чтобы без их лицензии нельзя было эти процессы использовать в промышленном масштабе.

Юрий Юрьевич, вы имеете возможность и оттуда, из-за рубежа, и отсюда, изнутри, видеть и оценивать положение отечественной науки. Есть ли у вас рецепт для ее выживания?

Выписать рецепт я, конечно, не могу, но позволю себе привести в пример свой институт и немножко рассказать о том, что сделал сам.

Институт клеточной биологии и генной инженерии был создан Украинской академией наук в 1989 году на базе отдела Института ботаники вокруг новых технологий и относительно молодыми людьми. На момент создания института средний возраст сотрудников был 30 лет с небольшим. Через два года Советский Союз распался на отдельные государства, открылись границы, и молодежь потянулась на Запад - на родине стало не до науки. Из 150 сотрудников института примерно 50 уехали, и фактически никто не вернулся. Из тех, кто уехал, едва ли не все нашли себе приличные места: 20% - в компаниях и 80% - в университетах. Я могу вам показать публикации в таких журналах, как "Нэйчер", "Сайенс", "Доклады Академии наук США", и вы увидите, что наши бывшие сотрудники выступают первыми авторами.

В ваших словах слышится гордость за тот высокий уровень, который ваши сотрудники продемонстрировали за рубежом. Но неужели вам, самому молодому в стране академику, только недавно ставшему директором института, созданного в расчете на вас и ваших коллег, не было досадно все это наблюдать?

Конечно, мне, как директору института, терять сотрудников не хотелось, но потеря была бы двойной, если бы они не уехали, а просто закопали свои таланты здесь, где условий для того, чтобы заниматься серьезной наукой, больше не было.

В создавшемся положении я стал думать, как быть с институтом. Размышлять об этом мне было легче, чем моим коллегам, поскольку в 1991 году я сам получил приглашение крупной американской компании и поехал туда работать на следующих условиях. Первое: я сохраняю за собой пост директора института в Киеве и буду приезжать сюда по крайней мере раз в два месяца на неделю. Компания согласилась и финансировала мои поездки - шесть поездок в год. Второе мое условие: давать институту гранты для поддержания его работы - также было выполнено.

Конечно, я понимал, что компания должна жить по законам бизнеса и деньги она будет выделять только на то, что нужно ей. Проводить сбор биологического материала и анализ биологического разнообразия на фармакологическую и агрохимическую активность было для нас не очень профильной работой, но в 1992 году, согласно контракту с компанией, институт начал этим заниматься. Я знал, что в какой-то мере это была, грубо говоря, проституция, но мне казалось, что на первом этапе она оправдана. Для того чтобы обучиться, институт готов был взять на себя второстепенные компоненты технологического процесса с тем, чтобы в материальном отношении встать на ноги, а кроме того, получить представление о том, как биотехнологический процесс организован во всем мире, каковы требования больших компаний и куда все это идет. Словом, как играть в эту игру...

Простите, прерву вас. Давайте открутим пленку назад. Расскажите, пожалуйста, как вы дошли до жизни такой? Где родились, учились?

Родился в Закарпатье, окончил школу с физико-химическим уклоном. Физику, естественно, знал хорошо и решил стать физиком (вообще я рано понял, что буду заниматься наукой). Но тут выяснилось, что бурными темпами начала развиваться биология, и я придумал, что биофизика - это и есть та физика, которая меня интересует. В 1966 году я поступил в Киевский университет имени Т. Г. Шевченко на факультет биофизики. Вспоминаю, что у моей мамы было достаточно денег, чтобы дать мне на билет в одну сторону. Если бы я не поступил, то мне бы не на что было возвратиться домой.

В университете я быстро обнаружил, что биофизика в ее тогдашнем понимании - узкая область и что мне гораздо интереснее генетика, как информационная наука о живом, поэтому переключился на генетику. В 1971 году я защитил диплом и хотел остаться на кафедре генетики, однако ее декан, указав на мое неблагонадежное поведение (я тогда ходил на какие-то собрания и протестовал против русификации, сейчас уже не помню чего, - в общем, обычное восстание против нормы), объяснил, что аспирантом я быть могу, но учебное заведение не для меня, так как я есть идеологически плохой пример для студентов. Пришлось искать другое место. В конце концов директор Института ботаники академик Константин Меркурьевич Сытник, тогда вице-президент Академии наук Украинской ССР, поговорив со мной, признался, что у него самого "сложный" сын и что "не будет хорошего вина, если оно в молодости не перебродит". И я стал аспирантом в Институте ботаники. Но тут же объявил, что хотел бы заниматься конструированием растительной клетки, что по тем временам было весьма радикальной мыслью, так как речь шла о методах культивирования растительных клеток, а таких технологий в Киеве не было. Были они в Москве, в Институте физиологии растений, и Сытник позволил мне поехать туда и фактически выполнять работу там, в лаборатории члена-корреспондента АН СССР Раисы Георгиевны Бутенко. Я пробыл в Москве с 1971 по 1974 год и сделал работу, которую заметили западные коллеги и которую я доложил на ботаническом конгрессе в Ленинграде в 1975 году. После чего меня пригласили в Германию.

- Работать за границей, ведь это было тогда нереально!

Я ждал решения больше года, особо не рассчитывая на положительный ответ. Но оказалось, что отец одного из моих германских коллег продает Советскому Союзу оборудование и лично знает нашего посла в ФРГ товарища Фалина...

Таким образом, в 1977 году я уехал и полтора года проработал в Германии. У меня было право оставаться там два года, но я просто больше не выдержал: жену и дочь со мной, естественно, не пустили. Но после этой поездки я стал выездным и для того, чтобы поддерживать форму, практически каждое лето умудрялся по два-три месяца работать руками где-нибудь в лаборатории, в университетах Германии, Бельгии. А в 1982 году я удивительным образом попал на работу в Соединенные Штаты.

- Что ж удивительного, если вы стали выездным?

Дело в том, что американцы предлагали работу не в научном заведении, а в компании. При этом они сами прекрасно понимали, что советского ученого работать на фирму не отпустят. Поэтому они создали полностью юридически оформленный институт и пригласили меня в нем поработать. Я там у них был единственным сотрудником, а по прошествии трех месяцев, когда мой контракт кончился, они этот институт закрыли. Это легкое хулиганство доставило нам удовольствие и никому не навредило.

В конце 1980-х годов стало ясно, что наши попытки развивать современную биологию здесь захлебываются. На реактивы, приборы нужна была валюта, потому что собственной промышленности, которая бы всем этим обеспечивала, у нас не было - мы слишком опоздали с признанием генетики, молекулярной биологии. Известное постановление ЦК КПСС и Совмина о развитии молекулярной биологии, к сожалению, оказалось не слишком действенным. Потом вышло постановление о физико-химической биологии; поменяли название, но речь шла все о том же, о необходимости финансирования работ в области современной биологии, однако и это постановление вскоре перестало работать. А без валюты молекулярная биология оказывалась не в состоянии что-либо делать. И тогда мы с Валентином Негруком, молодым доктором наук из Института физиологии растений, пошли на прием к Юрию Анатольевичу Овчинникову, академику, вице-президенту АН СССР и академику ВАСХНИЛ, и сказали ему, что понимаем: у государства нет денег, но, может быть, государство согласится на то, чтобы мы сами поискали деньги за рубежом?

Овчинников разрешил нам месячную поездку в Соединенные Штаты. За этот месяц мы объехали 25 компаний, предлагая свои разработки и возможность выполнять работы по контракту. Одна из компаний, "Американ Цианамид" (American Cyanamid, из числа крупнейших фармацевтических, сельскохозяйственных и биохимических компаний), заинтересовалась нашими предложениями, ее сотрудники приехали затем к нам, в Киев, и в итоге мы подписали первый контракт на работу по генетической инженерии трансгенных растений картофеля. Это был 1988 год.

Сотрудничество с этой компанией шло очень хорошо (оно продолжается по сегодняшний день, сейчас компания ведет работы в основном в области биотехнологии, раньше это была химия), обе стороны были довольны и результатами, и условиями работы. Скажу честно, мы получали не Бог весть какие деньги, но они давали нам возможность вести нашу работу. Так продолжалось до 1991 года, когда в стране все стало разваливаться и рушиться и когда мне предложили приехать в Принстон и продолжить работу там. Вот тогда я и стал торговаться и выторговал соглашение между "Цианамидом", Академией и мной, о котором я уже рассказал...

Вернемся к тому, что вы и ваши коллеги по Институту клеточной биологии и генной инженерии решили попробовать сыграть собственную партию...

Да, прошло время, и нам показалось, что мы уже усвоили правила большого биотехнологического поля и можно возвращаться в ту область, которая нам интересна. Кроме того, у нас появились деньги, позволявшие проводить патентование. Поэтому в прошлом году я бросил компанию "Американ Цианамид", хотя я там вырос от ученого-гостя (у них есть такое специальное название "выдающийся ученый-гость") до директора всего отдела биотехнологии растений, и основал свою компанию, которая имеет филиалы в Германии и в Соединенных Штатах. И вот теперь эта компания заключила с киевским Институтом клеточной биологии и генной инженерии контракт уже на профильные для него исследования.

- А чем занимается ваша компания?

Компания "Айкон дженетикс" (genetics в переводе с англ. - генетика, icon - икона; хотя мы и старались отразить в названии наше происхождение, но слово icon взято нами из компьютерного языка - это иконка на экране монитора, которую вы должны нажать, чтобы выйти в определенную программу) создана для того, чтобы позволить более эффективно управлять биологической информацией, введенной в растение извне. Операционные системы для информации, закодированные в ДНК и введенные в растение, - вот это и есть наша задача. Аналогия из компьютерного языка здесь вполне уместна. Она также понятна инвесторам, которых удалось убедить вкладывать деньги в эту компанию. Инвесторы видят большое будущее не только за поиском генов, определяющих новые полезные признаки растений, но и за операционными системами, которые позволят управлять этими генами более эффективно, чем можно на сегодняшний день.

- И ваш институт встроился в эту систему? Он - часть компании?

Институт клеточной биологии и генной инженерии имеет эксклюзивный пятилетний контракт с компанией "Айкон дженетикс" и, таким образом, не только может решить свои материальные проблемы по поддержке ученых, закупке оборудования и т. д., но эти ученые будут работать в той области, в которой являются профессионалами, и им не придется искать случайных заработков в каких-то иных сферах, где их профессионализм не будет востребован.

Да, реальность состоит в том, что выход в международное пространство возможен лишь при определенной материальной обеспеченности. Поэтому поначалу мы просто зарабатывали деньги, для чего брали на себя выполнение таких задач, на которые люди более строгого к себе отношения вряд ли бы согласились. Мы же расценивали это как неизбежный для себя шаг, полностью осознавая, что ожидать от государства поддержки наивно, да в общем-то и нечестно, ведь перед ним встали гораздо более серьезные и важные проблемы, и даже если допустить, что государство признает науку вполне равновесной этим проблемам, оно объективно не в состоянии содержать ее на том уровне, который необходим ей сегодня, чтобы оставаться конкурентоспособной.

- Итак, давайте суммируем: на первом этапе надо...

Найти возможность для выживания за свой собственный счет. Второй этап - изучение всего процесса производства интеллектуальной собственности и ее юридической защиты. Третий - поиск клиентов, которым нужна эта интеллектуальная собственность. Ну, а дальше вы уже посмотрите, придавать ли вашему научному учреждению форму бизнеса или оставить его в основном академическим институтом, занимающимся также и прикладными разработками, чтобы поддерживать и то и другое направление исследований.

На сегодняшний день никаких других серьезных подходов я не вижу. Международные программы и фонды, которые питаются за счет денег налогоплательщиков своих стран, рано или поздно уйдут, поскольку задуманы как временные, на длительные фундаментальные исследования денег нет даже внутри стран - участниц этих фондов. Да и с какой стати гражданам США поддерживать науку в бывшем Советском Союзе? Разве что для того, чтобы Россия, СНГ не превратились в источник опасности для них. Но поскольку в цивилизованной ситуации этого нет, американский налогоплательщик имеет все основания повернуться к нам спиной, и не стоит за это на него обижаться. Программы поддержки за счет меценатов точно так же недолговечны. Ни Джордж Сорос, ни даже Билл Гейтс (хотя он сейчас много денег тратит на иммунологию и биотехнологические исследования) не могут тащить все на своих плечах.

- Но механизм, который вы наметили, без воли подобных вам людей не запустится.

Конечно, и сегодня наши научные работники в значительной степени зависят от того, есть ли лидер в их области, который в состоянии найти им применение без того, чтобы ломать их тягу к конкретной проблеме в науке.

Мы все время говорим о талантливых ученых, а талантливый ученый на сегодняшний день - это не только тот, кто, так сказать, бежит дистанцию на сто метров. Это многоборец, человек, который должен быть и хорошим менеджером, и бизнесменом, и ученым, конечно, очень хорошим. Его интерес к познанию нового сегодня может реализоваться только лишь как у режиссера кино, которому нужны деньги, нужен коллектив и нужно знать, будут ли покупать его кинофильм. Нет уже науки одиночек. Может быть, еще существуют какие-то вопросы в теоретической физике или математике, где талант довольствуется карандашом и листом бумаги. В остальном исследование - дорогостоящее коллективное предприятие, своего рода индустрия, и вам, как кинорежиссеру, нужно видеть и уметь охватить в ней все. Разумеется, есть люди, которые, не умея этого делать, являются прекрасными учеными, но для них остаются зачастую более скромные места в мировом научном процессе. Печально, но это так.

- Получается, что пока альянсы, подобные созданному вами, штучный товар?

Да, поэтому мне и казалось, что то, что мы затеяли с институтом и несколькими другими лабораториями на территории СНГ (а я хотел бы подчеркнуть, что это - не уникальные договоры, кроме них наша компания имеет договоры с большим числом европейских и американских университетов и институтов, но мы идем сюда, потому что знаем коллег, уверены в них и хотели бы им помочь; как видите, и у прагматиков могут быть идеалистические порывы), даст позитивный пример, которым как трафаретом попробуют воспользоваться другие ученые. Я бы этого хотел.

Мне кажется, что вся затея Сороса с поддержкой российской науки в какой-то мере оставила печать горечи, ибо она дала меньший эффект, чем могла. Конечно, бросив огромные деньги на фундаментальную науку, Сорос дал ей поддержку. Я отношусь к нему с очень большим уважением и благоговением, потому что делал он это абсолютно чисто, без каких-либо дурных помыслов, а то, что писала на эту тему наша пресса, на 90% несправедливо и некрасиво. Он поддержал науку. Но он не указал вектор, куда идти, и мы его вовремя не подтолкнули к этому. Тем самым он затянул агонию, дезориентировал ученых. Многим показалось, что как-нибудь да продержимся: сейчас поживем на деньги Сороса, потом появится кто-то еще... Но никто не появился. Почему? Проблема меценатства ждет своего решения. А все наши встречные предложения, например, по созданию "инкубаторов бизнеса", куда бы направлялись молодые ученые, которые, пройдя конкурс отбора лучших идей, имели бы возможность провести исследования и получить профессиональную поддержку для патентования, а затем на основании каких-то разработок открыть фирму и т. д., - такого рода предложения слишком поздно к нему пришли, он уже потерял интерес. Джордж Сорос - очень быстрый человек, мы же долго раскачивались и поэтому его потеряли.

Так что самым простым для нас вариантом было бы все-таки научиться жить так, как живет остальная часть мирового научного сообщества. Это очень простая мысль, но она почему-то с трудом проникает в сознание наших ученых.

Юрий Юрьевич, в начале нашей беседы вы упомянули, что питаете пристрастие к растениям. Какие же чувства вызывает у вас зеленый цвет и то живое, что с ним связано?

Не могу сказать, чтобы у меня был какой-то осознанный и понятный мне самому мотив. Просто с растениями мне более комфортно, чем с животными. Может быть, меня в детстве покусала собака? В любом случае это все-таки от детства идет. Я с удовольствием собирал декоративные растения, любил цветы, хорошо знал латынь, разбирался в видах, а сейчас моей страстью стала деревянная скульптура - ведь это тоже растения, только превращенные в искусство. Разумного объяснения своего пристрастия у меня нет. Каждый из нас чем-то отличается от другого, в этом пристрастии - одно из моих отличий.

ЛИТЕРАТУРА

"Наука и жизнь" о биотехнологии:

По следам овечки Долли . - № 6, 1997.

Созинов А., акад. РАСН, НАНУ и УААН. Семена для третьего тысячелетия. - № 10, 1998.

Фролов Ю. Трансгенные растения: как это делается. - № 10, 1998.

Киселев Л., член-корр. РАН. Впервые огромный генетический "чертеж" многоклеточного существа прочитан полностью. - № 3, 1999.

Попов Л., канд. биол. наук. Стадо для чеддера . - № 8, 1999.

Попов Л., канд. биол. наук. Фантастический шницель. - № 4, 2000.

«Биотехнологии станут ключевой отраслью XXI века», — убеждена основательница новой компании «Twist Bioscience» (Сан-Франциско, США). Недавно учреждению выделили почти 31 млн. долларов на создание высокоэффективного автоматизированного устройства производить синтетическую ДНК. Оборудование по показателям эффективности должно превзойти современные аналоги в сто раз. В воплощении в жизнь задекларированного проекта особенно заинтересованы химическая промышленность, сельское хозяйство и фармацевтика.

Биотехнологии

Биологический материал, гены в частности, становятся коммерческим продуктом, который заказывают у специальных поставщиков. Несколько имеющихся высокотехнологичных компаний могут синтезировать практически любую комбинацию генов для удовлетворения любых потребностей клиента. Однако нынешнее состояние индустрии могут в корне изменить инновационные разработки калифорнийского стартапа «Twist Bioscience».

На прошлой неделе вновь компания рассказала об успешном привлечении 26 млн. долларов венчурных инвестиций для внедрения технологии генного синтеза. «Twist Bioscience» поддержало американское правительственное Агентство передовых оборонных исследовательских проектов (DARPA), заключив контракт, стоимостью почти 5 млн. долларов.

«Только за 10 месяцев мы собрали исследовательскую и управленческую команду высокого класса и создали прототип силиконовой пластины с 10 тыс. «гнезд», она необходима для производства синтетической ДНК, — сообщила Эмили Лепрус, генеральный директор учреждения. — Первые продукты и услуги мы предложим уже к концу 2015 года».

Будущий генный синтезатор будет величиной 1,8х1,8 м. Ключевой деталью, «сердцем» аппарата станет силиконовая пластина. Сначала на каждую машину будет приходиться по одной такой детали. Сегодня их изготавливают в основном из пластмассы в формате 8х12 см., на каждой из них — по 96 конусообразных гнезд. «Twist Bioscience» будут производить их из силикона и уменьшат до размеров почтовой марки. Более того, на каждом из так называемых ячеек разместят еще 96 аналогичных микроскопических деталей, то есть всего на одной плате будет насчитывать более 9 тыс. звеньев.

Читателю на заметку: Если вам нужен питомник деревьев и кустарников , то обращайтесь к специалистам на сайте zm-plants.ru. Уверен, вы останетесь довольны взаимовыгодным сотрудничеством!

По сравнению с современными образцами, оборудование «Twist Bioscience» будет производить генные материалы в сто раз эффективнее — причем, со значительно меньшей себестоимостью. «То, чем мы занимаемся, заключается в налаживании производственного процесса, с помощью которого можно быстро и дешево синтезировать большое количество генов очень высокого качества, — рассказала Эмили Лепрус. — Мы не стремимся к гламуру, нам нужна надежность».

Решение начать проект исследовательница приняла совместно с коллегами по цеху: Биллом Баньяи и Биллом Пеком. «Образовать 10 тыс. различных генов — одному не под силу. Времени на производство понадобится много. На создание полноценной ДНК уйдут недели или даже месяцы», — пояснила Лепруст.

Учитывая такие обстоятельства необходимым признали расширить возможности одновременного синтезирования генов; изготовить аппарат, управлявший бы перекачкой жидкости и другими технологическими процессами. Силиконовые пластины будут производить на том же оборудовании, что применяют в электронной промышленности; оно уже есть на рынке и стоит относительно недорого.

В планах на будущее: привлечь к работе 80 работников, в том числе специалистов по информатике, программной инженерии, химии, биохимии, маркетингу и т.п. Впереди работа над созданием генного синтезатора и программного обеспечения — они позволят полностью автоматизировать процесс генного производства.

В случае успеха «Twist Bioscience» может рассчитывать на клиентов из различных отраслей: химической, сельскохозяйственной, а также из сферы диагностики. Оборудование компании позволит получать генномодифицированных микробов, способных образовывать аммоний из азота, что находится в воздухе. Благодаря такой технологии отпадает необходимость удобрять поля. Новый генный синтезатор мог бы ускорить появление технологии изготовления пластмассы из биомассы, что существенно уменьшило бы потребность в нефти. И, кроме того, «Twist Bioscience» может упростить и удешевить вакцины и персонализированные медицинские препараты.

По мнению Эмили Лепрус, биотехнологии станут ключевой индустрией ХХ в., ведь с их помощью мир можно накормить, обеспечить энергией и оздоравливать. «Растения и микробы спасут мир. Именно от них мы будем получать еду и здоровье».

Вначале «Twist Bioscience» сосредоточит производство в Сан-Франциско, однако впоследствии планируют выйти на глобальный уровень и создать производственные центры в Европе и Азии.

»

Развитые страны особо заинтересованы в сохранении окружающей среды. Там хорошо знают, насколько природа уже пострадала от деятельности человека, и понимают: если увеличить посевные пло­щади, нарушения будут еще больше. Не исключено, что эти страны

могли бы удвоить производство пищи на тех же площадях и без ген­ной инженерии, используя широкий спектр агрохимических пре­паратов и наиболее прогрессивные методы селекции.

Развивающиеся страны и страны с переходной экономикой стремятся к продовольственной независимости. Они хотят произ­водить пищу сами, а не зависеть от других, ибо продовольствие - это, пожалуй, самое грозное политическое оружие в современном мире. Чтобы удвоить производство продовольствия в этих странах, не обойтись без новых технологий и знаний о генах, определяющих урожайность и другие важные потребительские свойства основных сельскохозяйственных культур, предстоит также серьезно потру­диться над совершенствованием их свойств. Иными словами, при­ходится «опираться» на трансгенные, или генно-модифицирован­ные (ГМ) сорта.

Геном растений имеет большой потенциал, в том числе для роста урожайности. Это важный аспект, не принимаемый в расчет «зелеными». Они полагают, что продуктивность сельского хозяй­ства развивающихся стран и стран с переходной экономикой зави­сит от социальных и экономических условий, с чем трудно не со­гласиться, но не учитывают, что сегодня для повышения произво­дительности этого уже недостаточно и нужны новые технологии. Лишь они позволят приблизиться к устойчивому сельскому хозяй­ству, устойчиво функционирующей промышленности и, соответ­ственно, к устойчивой (самовосстанавливающейся) окружающей среде.

Как известно, в XIX в. даже в самых развитых странах происхо­дили выступления против использования детского труда, низкой заработной платы, 12-часового рабочего дня. Но мы сегодня пре­красно понимаем, что реальные изменения произошли не столько из-за этих выступлений, сколько благодаря применению в про­мышленности новых, более эффективных, технологий. Итак, если мы хотим перемен, придется призвать на помощь науку.

Совершенно неприметный сорняк с громким латинским назва­нием Arabidopsis thaliana вошел в историю, став первым растением, генетический код которого расшифрован. А в конце 2001 г. обнародо­ван геном риса. Обращают на себя внимание некоторые интересные особенности этих результатов:

обилие генов - их почти столько же, сколько в геномах млеко­питающих;

необычная регуляция активности генов - число влияющих на нее факторов достигает 1800 (гораздо больше, чем у нематод, дрож­жей, дрозофилы);

в некоторых случаях отдельные функции генов выражены го­раздо сильнее, чем в других (не исключено, что именно так расте­ния приспосабливаются к стрессам, заметно меняя метаболизм);

Arabidopsis не был известен как растение, синтезирующее алка­лоиды или терпеноиды, но в его геноме обнаружено много мета­болических путей, связанных с подобными вторичными метабо­литами (для химической и фармацевтической промышленности такие знания о метаболических путях трудно переоценить, более того, похоже, это приведет к созданию новой отрасли промышлен­ности);

вновь пришлось столкнуться с фундаментальной проблемой высокой консервативности генов в эволюции - удивительно, на­сколько, например, схожи гены растений и млекопитающих.

Помимо всего остального это позволяет судить о путях эво­люции, сравнивая геномы различных организмов. Видя, как похожи гены, и размышляя над консерватизмом эволюции, по­нимаешь, что есть лишь одна концепция организации живого - философия жизни вообще, так что не может быть ничего противо­естественного в перемещении генов из одного организма в другой.

Комикс на конкурс «био/мол/текст»: Генная инженерия и биотехнология, будучи одними из главных направлений научно-технического прогресса, способствуют решению разнообразных задач. За счет генной инженерии совершен огромный шаг навстречу новым технологиям. В этой статье будет рассказано об истории открытия, становления и успехов биотехнологии, а также о тех вопросах, над которыми сейчас работают молекулярные биологи и биотехнологи.

Генеральный спонсор конкурса - компания «Диаэм» : крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.


Спонсором приза зрительских симпатий выступил медико-генетический центр .


«Книжный» спонсор конкурса - «Альпина нон-фикшн »

Генная инженерия и биотехнология, будучи одними из главных направлений научно-технического прогресса, хорошо способствуют решению разнообразных задач.

В настоящее время биотехнология способна решить множество проблем медицины и создания пищевых продуктов. Также особая роль биотехнологии отводится в сельском хозяйстве. Ученые занимаются созданием и дальнейшим культивированием трансгенных растений и синтезом средств их защиты.

За счет генной инженерии был совершен огромный шаг навстречу новым технологиям. Однако ее развитие породило множество споров, в том числе и о ГМО . Несмотря на все слухи, польза ГМО явно видна. ГМ-растениям не страшен холод, пестициды или засуха. Помимо этого, использование генномодифицированных организмов может улучшить качество жизни населения стран третьего мира.

Самая главная молекула. Открытие ДНК

Несомненно, молекула ДНК занимает особое место в биологической науке. Ведь ДНК является носителем всей наследственной информации, сохраняет ее и передает следующему поколению. Именно с открытия знаменитой двойной спирали учеными Фрэнсисом Криком и Джеймсом Уотсоном (1953 г.) начался новый виток в истории человеческой культуры - эпоха генетики, молекулярной биологии, биотехнологии и биомедицины.

Значение ДНК колоссально, поскольку во всех живых организмах генетическая информация существует в виде особой структуры - двойной спирали. Рассмотрим ДНК с химической точки зрения. Молекула представляет собой достаточно длинную цепь из строительных блоков - нуклеотидов . А каждый нуклеотид состоит из азотистого основания , дезоксирибозы (особого сахара) и фосфатной группы .

Язык науки. Генетический алфавит

Двухцепочечная молекула ДНК хранит генетическую информацию, а генетическим кодом называют систему записи последовательности кодируемого белка нуклеотидами в гене.

Между языком генетики и любым другим языком можно для наглядности провести параллель. Как самый обычный текст, написанный, к примеру, на русском или английском языках, описывающий последовательность действий, так и запись информации в гене о последовательности аминокислот белка состоит из логически упорядоченных букв. То есть вся генетическая информация в молекуле записана набором из четырех букв - так называемым «алфавитом». Нуклеотиды обозначаются буквами А (аденин), Т (тимин), Ц (цитозин) и Г (гуанин). Они одинаковы у всех - от бактерий до человека. Различной будет лишь последовательность этих букв.

Свойства генетического кода:

  • Триплетность . Генетический код состоит из трех букв - триплетов нуклеотидов ДНК. Они комбинируются в разной последовательности: ГЦА, АЦГ, ААТ и т.д. Каждый из триплетов кодирует конкретную аминокислоту, а это значит, что все 20 существующих аминокислот зашифрованы тремя определенными нуклеотидами.
  • Вырожденность . Триплетов, кодирующих аминокислоты, существует 61, а аминокислот только 20, поэтому каждая аминокислота может кодироваться несколькими триплетами.
  • Однозначность . Каждому триплету соответствует только одна аминокислота.

Кольцо и спираль. Разнообразие форм

После открытия структуры ДНК началось активное развитие молекулярной биологии. Тем не менее, понимая строение ДНК на уровне химической структуры, никто не мог представить, что эта молекула может быть кольцевой. Как теперь известно, кольцевую ДНК имеют бактерии. Но кольцевая молекула есть и у человека, она находится в митохондриях.

Кольцевое строение ДНК наиболее эффективно для ее удвоения, то есть репликации . Репликация кольцевого типа - относительно простой процесс удвоения молекулы. Происходит разделение цепочек исходной молекулы и наращивание по принципу комплементарности новых цепочек по существующим. В результате получаются дочерние ДНК, которые окажутся идентичными копиями исходной. При кольцевом строении молекулы процесс удвоения протекает более точно.

Роль биотехнологии. Правда о ГМО

Переход биологии на молекулярный уровень дал начало развитию биотехнологии . Ее суть состоит в использовании методов генной инженерии для рыночного производства значимых биологических продуктов: новейших лекарств, реагентов для научных исследований и продуктов питания.

Для создания всего вышеперечисленного используют рекомбинантные белки . Это такие искусственно созданные и обладающие новыми свойствами белки, синтез которых контролируют новые гены, внедренные в клетки.

Рекомбинантные ДНК

ДНК - главный материал, с которым работает генный инженер. Но проверять результаты работы и производить рекомбинантный продукт придется с помощью живых организмов. Так, при создании рекомбинантных ДНК нельзя обойтись без кишечной палочки, которая подходит для производства некоторых биотехнологических продуктов. А при работе с эукариотическими генами и белками часто используют пекарские дрожжи. Главная особенность дрожжей - отличная способность к гомологичной рекомбинации. Дрожжи также удобно использовать при производстве рекомбинантных белков, так как они умеют редактировать матричную РНК, их продукты лишены токсичности, а у некоторых видов достаточно высокий выход продукта.

Вышеуказанные микроорганизмы стали моделями для изучения молекулярной организации и отработки генетических техник у прокариот и эукариот. Для обеспечения техники безопасности и удобства работы с рекомбинантными ДНК были созданы различные мутанты кишечной палочки. К примеру, следующие:

  • неспособные передавать плазмиды другим клеткам;
  • устойчивые к бактериофагам;
  • содержащие мутации для выявление клеток с рекомбинантными ДНК.

Для генных инженеров эта бактерия особо значима, так как:

  • для работы с ней не требуется дорогое и сложное оборудование;
  • она чувствительна к большинству стандартных антибиотиков (это существенно облегчает подбор маркеров для клонирования);
  • ее геном и биохимия хорошо изучены, разработано огромное множество инструментов для работы с ней.

Однако у кишечной палочки есть и ряд недостатков:

  • продукты, полученные при работе, могут обладать токсическими свойствами, поэтому необходимы постоянный контроль и очистка;
  • она не умеет самостоятельно сворачивать и модифицировать синтезируемые белки;
  • иногда снижается выход целевого продукта из-за формирования неполноценных белков.

Постепенно увеличивалось влияние биологии на быт и жизнь человека в целом. Это привлекло к ней всеобщее внимание. Рост возможностей современной биотехнологии породило множество споров, в том числе и о ГМО.

Человечество тысячи лет вмешивается в эволюционные процессы, проводя искусственный отбор организмов с полезными, значимыми для человека спонтанно возникшими мутациями - селекцию . К примеру, когда-то всем известной кукурузы (в современном понимании) и вовсе не существовало. Древние люди занимались скрещиваниями дикого родственника нынешней кукурузы - теосинте . И как выяснилось в результате исследований, геномы теосинте и кукурузы оказались уж очень схожими. Разницу между двумя видами определили несколько десятков генетических мутаций.

Многих пугает даже сама аббревиатура «ГМО», ведь каждый вкладывает в нее какой-то свой смысл, а у многих она ассоциируется с чем-то злым, опасным и даже смертоносным. Вероятнее всего, ГМО нагоняет страх на людей из-за непонимания, что же это такое.

ГМО - это организмы, геном которых был изменен при помощи генетической инженерии . Тем не менее факт остается фактом: за счет эволюционных процессов гены изменяются сами по себе у всех живых организмов. Отличие лишь одно: в процессе эволюции мы не можем контролировать процесс изменения генома, а в лаборатории, используя современные знания и технологии, способны изменять и улучшать гены.

Кстати говоря, у ученых-генетиков нет ни стимулов, ни целей создавать что-либо угрожающее здоровью всего человечества. Специалисты стремятся продвигать научный прогресс и производить те продукты, которые будут нужны людям.

Современная биотехнология. Генная инженерия сегодня

На данный момент перед учеными стоит ряд технологических задач. Можно изменить биологические организмы с помощью генноинженерных и клеточных методов для удовлетворения потребностей человека. К примеру, улучшить качество продуктов, получить новые виды растений и животных, придать различным живым организмам улучшенные свойства и создать необходимые лекарственные препараты за счет методов генетической инженерии .

Несомненно, в биотехнологии важное место занимает генная инженерия, позволяющая «кроить и шить» геномы подопытных организмов . Роль биотехнологии очень велика, поскольку ее способами производят генноинженерные белки (интерфероны, вакцины против серьезных заболеваний), вещества для фармакологии (лекарства, антибиотики , гормоны, антитела). А различные ферментные препараты применяют в производстве стиральных порошков, спирта. Особая роль биотехнологии - синтез средств для защиты растений и создание трансгенных растений

Трансгенные растения: вред или польза?

Люди могли изменять ДНК растений на протяжении многих лет. Скрещивая друг с другом растения с самыми лучшими свойствами, специалисты замечали, что эти свойства будут сохранены в потомстве. Так зародилась селекция.

Работа специалистов-селекционеров упростилась, когда в науке стали применять генетические законы Грегора Менделя. Позже было обнаружено, что возможно улучшить необходимые свойства растений при помощи мутаций. Число этих мутаций можно увеличивать за счет химикатов и рентгеновских лучей. В результате таких экспериментов было получено огромное количество разнообразных сортов растений. Важно знать, что такой метод может дать непредсказуемые результаты, поскольку, как известно, мутации спонтанны.

Конечно, из различных источников информации можно узнать о предполагаемом вреде трансгенных растений. И на второй план уходит одна из главных задач трансгенных организмов - спасение от нехватки важных питательных веществ и голода населения Земли. Существуют такие трансгенные растения, за счет которых удалось спасти человеческие жизни. Хорошим примером послужит золотой рис.

Золотой рис - генетически модифицированный сорт посевного риса, в зернах которого содержится огромное количество бета-каротина . Эти зерна имеют золотисто-желтый цвет. Считается, что это первая сельскохозяйственная культура, которая целенаправленно генетически модифицирована для улучшения пищевой ценности.

Вообще, при обширном выращивании, золотой рис может в несколько раз улучшить качество питания во многих странах (в том числе и в ряде стран третьего мира), где наблюдается нехватка витамина A. В организме человека витамин A производится из бета-каротина, который поступает преимущественно с растительной пищей. Для модификации риса использовали два гена: ген цветка

В последнее десятилетие термин «биотехнология» все чаще появляется в заголовках новостей, а открытия в этой области становятся причиной для жарких споров. Действительно, свое наибольшее развитие наука получила именно в последние годы, и этому в большей степени способствовал технический прогресс, но в повседневной жизни биотехнология используется на протяжении многих веков.

История развития биотехнологии

С древнейших времен биотехнология применялась человеком для изготовления вина, в сыроварении и других вариантах приготовления пищи. Биотехнологический процесс, а именно брожение, использовался еще в древнем Вавилоне для производства пива. Об этом свидетельствуют найденные при раскопках записи на дощечках. Но, несмотря на активное использование этих методов, процессы, лежавшие в основе этих производств, оставались загадкой.

Луи Пастер в 1867 году говорил, что такие процессы, как сквашивание и брожение, есть ничто иное, как итог жизнедеятельности микроорганизмов. Эдуард Бухнер дополнил эти предположения, доказав, что катализатором является бесклеточный экстракт, который содержит ферменты, вызывающие химическую реакцию.

Позже были сделаны сенсационные по тем временам открытия, которые помогли сформировать данную науку в современном ее понимании:

  • 1865 год австрийский монарх Грегор Мендель представил свой доклад «Опыты над растительными гибридами», где были описаны закономерности передачи наследственности;
  • в 1902 году Теодор Бовери и Уолтер Саттон высказали предположение о том, что передача наследственности напрямую связана с хромосомами.

Годом появления термина стал 1919, после публикации манифеста венгерским агроэкономистом Карлом Эреки. Основываясь на имеющиеся в то время данные, под термином биотехнология подразумевалось применение микроорганизмов для ферментации продуктов питания.

Но, как известно, самые интересные открытия совершаются на стыке знаний, в случае биотехнологии, объединились пищевая и нефтеперерабатывающая промышленность. В 1970 году на практике была опробована технология производства белка из отходов нефтепромышленности.

Что такое биотехнология: термин и основные виды

Биотехнология – наука о способах создания различных веществ с использованием естественных биологических компонентов, будь-то микроорганизмы, животные или растительные клетки. По сути, это манипулирование живыми клетками для получения определенных результатов.

Основными направлениями развития науки являются:

Биоинженерия – дисциплина, направленная на расширение знаний в области медицины (лечение, укрепление здоровья) и инженерии

Биомедицина – узкоспециализированный раздел медицины, который с теоретической точки зрения изучает строение человеческого организма, диагностику патологических состояний и возможности их коррекции. Раздел медицины, занимающийся контролем и лечением биологических систем живых организмов на молекулярном уровне, называется наномедициной.

Гибридизация — процесс получения гибридов (растений, животных). В основе лежит принцип получения одной клетки (устойчивой к тем или иным условиям) путем объединения других клеток.

Сейчас у нас уже есть средства необходимые для того, чтобы прожить достаточно долго до тех пор, пока мы не станем бессмертны. Можно агрессивно применять существующие знания, чтобы кардинально замедлить процессы старения, и оставаться в жизнеспособном состоянии до того момента, когда станут доступны совершенно радикальные терапии по продлению жизни с помощью био- и нанотехнологий.

Ray Kurzweil (изобретатель, футуролог)

Высшим достижением биотехнологии является генная инженерия. Генная инженерия – совокупность знаний и технологий получения РНК и ДНК, выделения генов из клеток, осуществление манипуляций с генами и введение их в другие организмы. Это «управление» геномом живого существа или растения с целью получения заданных свойств. Например, руководствуясь знаниями в области генной инженерии, китайские ученые планируют массово применять метод «исправления» генома людей с онкологическими заболеваниями. Однако, запускать полномасштабные проекты пока никто не спешит, т.к. на сегодняшний день невозможно спрогнозировать последствия для организма в долгосрочном периоде.

Особого внимания заслуживает клонирование. Под этим процессом понимают появление нескольких генетических идентичных организмов путем бесполого (в том числе вегетативного) размножения. На сегодняшний день были клонированы не только растения, но и несколько десятков видов животных (овцы, собаки, кошки, лошади). О фактах клонирования человека пока нет данных, хотя, по мнению ученых, с технической стороны – к процессу все готово. Именно эти разработки стали самыми противоречивыми и обсуждаемыми мировой общественностью. Дело не только в вероятности получения неполноценных людей, но и в этической и религиозной стороне вопроса.

Сфера применения

Принципы биотехнологических процессов внедряют в производство всех отраслей:

  • пищевая промышленность. Производство алкоголя, аминокислот, ферментов безвредным для окружающей среды способом, называется белой биотехнологией.
  • химическая или фармацевтическая. Это направление еще называют красной биотехнологией. Биотехнологи разрабатывают усовершенствованные лекарственные препараты, вакцины и сыворотки против болезней, которые ранее считались неизлечимыми. В западных странах и в частности в Австрии наука пользуется большой популярностью и активно используется для диагностики различных заболеваний (биосенсоры, чипы ДНК).
  • переработка и утилизация отходов (биоремедиация). Методы серой биотехнологии используются для санации почв, очистки канализационных стоков и отработанного воздуха.
  • сельское хозяйство. Зеленая биотехнология позволяет ученым создавать образцы культурных растений, которые способны противостоять болезням и грибкам, с высоким уровнем урожайности вне зависимости от климатических условий (во время засухи). Кроме того, ученые научились использовать определенные ферменты, которые превращают целлюлозные отходы сельского хозяйства в глюкозу, а после в топливо.

Основной целью клеточной инженерии является культивирование животных и растительных клеток. Открытия в области клеточной инженерии позволили контролировать и регулировать продуктивность, качество, устойчивость к заболеваниям новых форм и линий животных и растений.

Инвестиции и развитие

Хотя биотехнологию сложно назвать «молодой» наукой, именно сегодня она находится в начале своего развития. Направления и возможности, которые открываются благодаря развитию этих знаний, могут быть бесконечными. Могут, если получат должное финансирование и поддержку. Основными инвестиционными участниками направления являются сами инженеры и биотехнологии, и это вполне объяснимо. Сегодня предлагается не сам продукт, а скорее идея, и возможные методы ее реализации.

И для осуществления этой задумки нужны десятки и сотни экспериментов, опыты и дорогостоящее оборудование. Не каждый инвестор готов идти только за идеей, рискуя своими вложениями. Но ведь не все верили и в мобильную связь, а сегодня она повсюду.

На данный момент число крупных компаний, занимающихся биотехнологическими разработками, невелико. К таковым относятся:

  • Illumina (генетические исследования, анализы, технология ДНК-микрочипов),
  • Oxford Nanopore (разработка и продажа продукции для взаимодействия с ДНК),
  • Roche (фармацевтическая компания),
  • Editas Medicine (адаптацией лабораторных методик редактирования генов к широкомасштабному применению в больницах),
  • Counsyl (предложила недорогой метод автоматизированного анализа ДНК для последующего использования данных в лечении).

По мнению экспертов, наиболее привлекательным направлением для инвестиций в биотехнологию являются компании, занимающиеся секвенированием. Это общее название методов, которые позволяют установить последовательность нуклеотидов в молекуле ДНК. Расшифровка ДНК данных (секвенирование), дает возможность идентифицировать участки, которые отвечают за наследственные заболевания, и устранять их. Как только процесс будет доведен до совершенства, люди смогут не лечить симптомы, а избавляться от болезни. Это перевернет наше представление о диагностике, и принесет большие дивиденды тем, кто сумеет рассмотреть потенциал компании еще на этапе идеи.

Биотехнология: добро или зло?

Уже сегодня население планеты сталкивается с проблемой нехватки продуктов питания, и если численность людей продолжит расти, то в ближайшем будущем ситуация может стать критической. Знания о том, что такое биотехнология и как ее применять, помогают получать максимальные результаты урожайности, вне зависимости от внешних факторов. И эти достижения нельзя сбрасывать со счетов. Кроме того, неоспоримым доказательством пользы науки является изобретение антибиотиков, которые позволили контролировать, а в некоторых случаях и полностью искоренять, сотни болезней.

Но далеко не все оценивают науку однозначно. Существуют опасения, что отсутствие контроля может привести к необратимым последствиям. Например, уже сегодня продукты биотехнологии, такие как стероиды для спортсменов, становятся причиной для преждевременных сердечных патологий. В погоне за созданием супер-человека, победившего старость и болезни, общество рискует потерять свое естество.

Мы не остались жить в пещерах. Мы не остаемся в пределах нашей планеты. С помощью биотехнологии, генетического секвенирования, мы даже не собираемся ограничиваться рамками самой биологии.
Jason Silva (оратор, философ, телезвезда).

Развитие биотехнологии стало таким стремительным, что мировые государства столкнулись с проблемой отсутствия контроля на правовом уровне. Это стало причиной приостановления многих проектов, поэтому пока о клонировании человека и победе над смертью говорить преждевременно, и два конфронтационных лагеря могут беспрепятственно поддаваться философским размышлениям.

Просмотров